您的位置:首页 > 学院概况 > 师资队伍

施开放

发布时间:2018-05-23 15:08:51     作者:    浏览次数: 次

电子邮箱:skffyy@swu.edu.cn

办公地点:地理科学学院0626

通讯地址:重庆市北碚区西南大学地理科学学院,邮编:400715

基本介绍:

施开放,男,汉族,安徽省马鞍山市人。20176月毕业于华东师范大学,获地图学与地理信息系统专业博士学位;其中,201411月—201612月国家公派赴澳大利亚CSIRO Land and Water进行联合培养。现任西南大学地理科学学院副教授。主要从事夜间灯光遥感、城市遥感、城市地理方面的研究与教学工作。

已在Applied EnergyEnergyRemote Sensing of EnvironmentIEEE Transactions on Geosciences and Remote SensingIEEE Journal of Selected Topics in Applied Earth Observations and Remote SensingRemote Sensing LettersGIScience & Remote SensingRemote Sensing、生态学报、环境科学、环境科学学报等国内外核心期刊上发表学术论文30余篇(其中ESI高被引论文2篇)。担任ISPRS Journal of Photogrammetry and Remote SensingInternational Journal of Remote SensingRemote Sensing LettersGIScience & Remote SensingFrontiers of Earth ScienceApplied Energy, Journal of Environmental Management等多个SCI/SSCI期刊审稿人。曾获博士研究生国家奖学金、硕士研究生国家奖学金、国家留学生基金委奖学金、华东师范大学优秀毕业研究生、重庆市优秀毕业研究生、华东师范大学地球科学学部优秀博士论文等奖励。

研究方向:

夜间灯光遥感,城市遥感,城市地理

工作经历:

201710月至今,西南大学地理科学学院,副教授

科研项目:

4.中央高校基本科研业务基金(一般项目)2018-2019(主持)

3.西南大学人才引进基金2018-2020(主持)

2.上海市教育委员会科研创新项目2015-2016(参与)

1.澳大利亚CSIRO国际合作项目2013-2016(参与)

学术兼职:

ISPRS Journal of Photogrammetry and Remote Sensing, International Journal of Remote Sensing‚ Remote Sensing Letters, GIScience and Remote Sensing, Remote Sensing (MDPI), Frontiers of Earth Science, Sustainability (MDPI), Applied Energy, Applied Spatial Analysis and Policy, Resources Conservation & Recycling, Journal of Environmental Management, Environmental PollutionSCI/SSCI期刊审稿人

获奖情况(包括学生时期):

10. 2017年获华东师范大学地球科学学部优秀博士论文

9. 2017年获华东师范大学优秀毕业研究生

8. 2016年获华东师范大学优秀研究生奖学金(学院唯一获得者)

7. 2015年获博士研究生国家奖学金

6. 2014年获国家留学生基金委“国家建设高水平大学公派研究生”奖学金

5. 2013年获重庆市优秀毕业研究生(学院唯一获得者)

4. 2013年获西南大学优秀毕业研究生

3. 2013年获硕士研究生国家奖学金

2. 2013年获西南大学研究生一等奖学金

1. 2012年获中国地理学会自然地理学与生态安全学术会议青年优秀论奖(获奖8人之一)

学术成果:

Google Citation: https://xues.glgoo.com/citations?hl=zh-CN&user=4doiZ7cAAAAJ&view_op=list_works&sortby=pubdate

主要学术论文(*为通讯作者)

2018

27. Shi, K., Yu, B*., Zhou, Y., Chen, Y., Yang, C., Chen, Z., and Wu, J., 2018. Spatiotemporal variations of CO2 emissions and their impact factors in China: A comparative analysis between the provincial and prefectural levels. Applied Energy In press. (SCI, 2016年影响因子7.182)

26. Shi, K., Yu, B*., Huang, C., Wu, J and Sun, X., 2018. Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road. Energy 150: 847-859. (SCI, 2016年影响因子4.520)

25. Shi, K*., Huang, C., Chen, Y and Li, L., 2018. Remotely sensed nighttime lights reveal increasing human activities in protected areas of China mainland. Remote Sensing Letters 9(5): 468-477. (SCI, 2016年影响因子1.532)

24. Shi, K*., Chen, Y., Li, L., and Huang, C. 2018. Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective. Applied Energy 211, 218-229. (SCI, 2016年影响因子7.182)

23. 孙秀锋, 施开放*, 吴健平, 2018. 县级尺度的重庆市碳排放时空格局动态. 环境科学 39(6): 466-476.

2017

22. Huang, C*., Chen, Y., Zhang, S., Li, L., Shi, K., and Liu, R., 2017. Spatial downscaling of Suomi NPP–VIIRS image for lake mapping. Water 9(11), 834; doi:10.3390/w9110834. (SCI, 2016年影响因子1.832)

21. Chen, Z., Yu, B*., Song, W., Liu, H., Wu, Q., and Shi, K., et al., 2017. A new approach for detecting urban centers and their spatial structure with nighttime light remote sensing. IEEE Transactions on Geoscience & Remote Sensing 55(11): 6305-6319. (SCI, 2016年影响因子4.942)

2016

20. Shi, K., Chen, Y., Yu, B*., Xu, T., Yang, C., Li, L., Huang, C., Chen, Z., Liu, R., and Wu, J., 2016. Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data. Applied Energy 184:450-463. (SCI, 2016年影响因子7.182)

19. Shi, K., Chen, Y*., Yu, B*., Xu, T., Li, L., Huang, C., Liu, R., Chen, Z and Wu, J., 2016. Urban expansion and agricultural land loss in China: A multiscale perspective. Sustainability 8(8), 790; doi:10.3390/su8080790. (SCI/SSCI, 2016年影响因子1.789)

18. Shi, K., Chen, Y., Yu, B*., Xu, T., Chen, Z., Liu, R., Li, L., and Wu, J., 2016. Modeling spatiotemporal CO2 (carbon dioxide) emission dynamics in China from DMSP-OLS nighttime stable light data using panel data analysis. Applied Energy 168:523-533. (SCI, 2016年影响因子7.182, ESI高被引用论文)

17. Huang C*., Chen, Y., Zhang S., Li, L., Shi, K., and Liu, R., 2016. Surface water mapping from Suomi NPP-VIIRS imagery at 30 m resolution via blending with Landsat data. Remote Sensing 8(8): 631; doi:10.3390/rs8080631. (SCI, 2016年影响因子3.244)

16. Li, L*., Chen, Y., Xu, T., Huang, C., Liu, R., and Shi, K., 2016. Integration of Bayesian regulation backpropagation neural network and particle swarm optimization for enhancing sub-pixel mapping of flood inundation in river basins. Remote Sensing Letters 7(7):631-640. (SCI, 2016年影响因子1.532)

15. Liu R*., Chen Y., Wu J., Xu, T., Li L., Yu J., Huang, C., and Shi, K., 2016. Evaluating likelihood distribution of flood risk integrating Bayesian Networks and GIS - A case study in Bowen Basin, Australia. In: The Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics 2016), Tianjin, China.

2015

14. Shi, K., Yu, B*., Hu, Y., Huang, Y., Huang, C., Chen, Y., Chen, Z., and Wu, J., 2015. Modeling and mapping total freight traffic in China using NPP-VIIRS nighttime light composite data. GIScience and Remote Sensing 52(3):274-289. (SCI, 2016年影响因子3.049)

13. Yu, B*., Shi, K., Hu, Y., Huang, C., Huang, Y., Chen, Z., and Wu, J., 2015. Poverty evaluation using NPP-VIIRS nighttime light composite data at the county level in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(3): 1217-1229. (SCI, 2016年影响因子2.913)

12. Li, L*., Chen, Y., Xu, T., Liu, R., Shi, K., and Huang, C., 2015. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sensing of Environment 164:142-154. (SCI, 2016年影响因子6.265)

11. Chen, Z., Yu, B*., Hu, Y., Huang, Y., Shi, K., and Wu, J., 2015. Estimating house vacancy rate in metropolitan areas using NPP-VIIRS nighttime light composite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 8(5): 2188-2197. (SCI, 2016年影响因子2.913)

10. Shi, K., Chen, Y., Wu, J., 2015. Comparison of Level 3 mean monthly GPROF products from GPM and TRMM microwave imager in estimating seasonal precipitation. In: The International Congress on Modeling and Simulation 2015 (MODSIM2015), Gold Coast, Australia.

9. Huang C., Chen Y., Zhang S., Liu R., Shi, K., Li L., and Wu J., 2015. Blending NPP-VIIRS and Landsat OLI Images for flood inundation monitoring. In: The International Congress on Modeling and Simulation 2015 (MODSIM2015), Gold Coast, Australia.

2014

8. Shi, K., Huang, C., Yu, B*., Yin, B., Huang, Y., and Wu, J., 2014. Evaluation of NPP-VIIRS nighttime light composite data for extracting built-up urban areas. Remote Sensing Letters 5(4):358-366. (SCI, 2016年影响因子1.532)

7. Shi, K., Yu, B*., Huang, Y., Hu, Y., Yin, B., Chen, Z., Chen, L., and Wu, J., 2014. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sensing 6(2): 1705-1724. (SCI, 2016年影响因子3.244, ESI高被引用论文)

6. 孙秀锋, 施开放, 刁承泰*, 左太安, 2014. 重庆市耕地生态承载力水平时空差异分析. 环境科学学报 33(11): 3181-3188.

5. 左太安, 刁承泰*, 施开放, 孙秀锋, 官冬杰, 2014. 基于物元分析的表层岩溶带“二元”水生态承载力评价. 环境科学学报 34(5): 1316-1323.

2013

4. 施开放, 刁承泰*, 孙秀锋, 左太安, 2013. 基于耕地生态足迹的重庆市耕地生态承载力供需平衡研究. 生态学报 33(6): 1872-1880.

3. 施开放, 刁承泰*, 孙秀锋, 左太安, 蔡朕, 禹阳春, 2013. 基于改进SPA法的耕地占补平衡生态安全评价. 生态学报 33(4): 1317-1325.

2. 施开放, 刁承泰*,孙秀锋, 2013. 基于熵权可拓决策模型的重庆三峡库区水土资源承载力评价. 环境科学学报 33(2): 609-616.

1. 施开放, 刁承泰*,左太安, 孙秀锋, 孙永爱, 2013. 基于熵权物元模型的耕地占补平衡生态安全评价. 中国生态农业学报 21(2): 243-250.